技術論文

鉄道分岐器内レールの肉盛溶接技術の開発
Development of Overlay Welding Technology for Rails in Turnouts

東日本旅客鉄道株式会社
総合技術開発推進部
三原 泰司
Yasushi Mihara

東日本旅客鉄道株式会社
千葉支社新小岩線区間長
柏谷 恵介
Keisuke Kasuya

溶接製造
技術開発室
宫崎 裕之
Hiroyuki Miyazaki

溶接製造
技術開発室
佐々木 満太郎
Mantarou Sasaki

技術開発部長
吉村 武憲
Takenori Yoshimura

要旨

大都市圏内運輸区域内における課題の一つとして、摩耗および損傷によるガードレールおよびトングレール等の分岐器材料の交換頻度が高いということがある。そこでレールの車輪接触面に硬化肉盛溶接を施すことにより分岐器材料の交換周期の延長を図ることを目的にレール硬化肉盛溶接材料の比較性能試験を実施した。

今回は室内試験で摩耗、静的曲げ、繰り返し曲げ疲労試験等を実施し、良好な結果が得られた。

Synopsis:

A theme of urban transport authorities is the high frequency replacement frequency of turnouts such as guard rails and tongue rails due to wear and damage. It aims at extending the replacement interval of the turnouts by giving overlaying to the wheel contact surfaces of the rails. Performance comparison tests of welding materials were conducted. Presented here are the results of wear test, slow bend test and bend fatigue test.

1 緒言

大都市圏内運輸区域内における課題の一つとして、摩耗および損傷によるガードレールおよびトングレール等の分岐器材料の交換頻度が高いということがある。そこで、分岐器材料に耐摩耗材を硬化肉盛溶接することにより同材料の交換周期の延長を図り、コストダウンを実現することを目的として、東日本旅客鉄道株式会社総合技術開発推進部が研究開発を委託され当社において実施した。

ガードレール等において車輪接触面に肉盛溶接を施し試験敷設を行い性能を確認していくが、その前段階として今回室内試験で肉盛溶接材料選定のための比較性能試験を実施したので以下に報告する。

2 材料の選定

現在、耐摩耗性を目的として使用されているレールにはビッカース硬さ400程度のベーナイト組織のものやDHHレールのように熱処理を施したものがある。

今回、耐摩耗性向上のためマルテンサイト組織を有する領域の材料を検索した。しかしレールを考えた場合、耐摩耗性向上の前提条件として繰り返し曲げ疲労等の破壊面を重視すべきである。そこで、組織中にオーステナイト相を含むA材と、マルテンサイト組織の中でも比較的硬さの低いB材を選定し、比較性能試験を実施した。

3 性能比較試験

2種類の材料（A材・B材）について、次に示す5項目の性能比較試験を実施した。

[1] 硬さ測定試験
[2] 耐摩耗性測定試験
[3] 耐衝撃性測定試験
[4] 静的曲げ測定試験
[5] 繰り返し曲げ疲労測定試験

4 試験方法

4.1 硬さ測定試験

試験方法はJIS Z 3114に示すビッカース硬さ試験にて行
5.2 耐摩耗性測定試験結果

50万回試験後の摩耗減少量をTable 6に示す。A材が0.587g、B材が0.080gの摩耗減少量となり、B材の方が摩耗量が少なかった。考察の項で詳細は述べるが、同条件下による普通レールの摩耗減少量は1.2g、またDHH370レールでは0.3gでありB材はこれらを上回る結果であった。

5.3 耐衝撃性測定試験結果

耐衝撃性測定試験結果をTable 7に示す。シャルビー衝撃試験により普通レールが16.5J、A材が3.1J、B材が4.07Jの測定結果が得られた。肉盛材料のA、B材は耐摩耗性を重視しているため、硬くて反面摩耗性であるので、測定された吸収エネルギーの値が低くなっていている。溶接部材となる普通レール鋼はA、B材と比較し、4～5倍の測定値であった。

5.4 静的曲げ測定試験結果

Table 8に静的曲げ測定試験結果を示す。

Head Up（被覆鋼）については、約200トンの荷重にもかかわらず368個全数（A材3本、B材3本）破断に至らなかった。これは被覆鋼のレール側のため、レールの曲げ強度が高いためと想定される。

Head Down（被覆鋼）については、肉盛材料側が引張りにより6を全数が（A材3本、B材3本）破断した。A、B材の比較ではB材の破断荷重の方が約200トン高い値を示している。DHHとの比較では破断荷重はB材が約200トン低い値を示した。B材のたわみ量はDHHとほぼ変わらない値であった。なお、表中の[]内数値はDHHの基準値を示す。

5.5 繰り返し曲げ疲労測定試験結果

Table 9に繰り返し曲げ疲労測定試験結果を示す。Fig.3にS～N曲線を示す。

A材・B材とも目標値であった曲げ応力274MPaで繰り返し数200万回の時間強度を満足した。この値は各種溶接鋼部の目標疲労強度である他、これら溶接鋼部と同程度の疲労強度を有することが確認できたと考えられる。詳細については参考文献とともに後項で述べる。
6.6 試験結果のまとめ

Table 10にA材・B材の各試験結果の比較一覧を示す。外

Table 10 Comparison of test results between A and B

<table>
<thead>
<tr>
<th>Examination item</th>
<th>A</th>
<th>Evaluation</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vickers hardness</td>
<td>Vickers hardness 479</td>
<td><</td>
<td>Vickers hardness 573</td>
</tr>
<tr>
<td>Wear</td>
<td>Wear loss: 0.5789g</td>
<td><</td>
<td>Wear loss: 0.0873g</td>
</tr>
<tr>
<td>Charpy impact</td>
<td>3.10I</td>
<td>≤</td>
<td>4.07I</td>
</tr>
<tr>
<td>Slow bend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H U</td>
<td>Fracture load 191 ton</td>
<td><</td>
<td>Fracture load 195 ton</td>
</tr>
<tr>
<td></td>
<td>No fracture</td>
<td></td>
<td>No fracture</td>
</tr>
<tr>
<td>Deflection</td>
<td>8.03mm</td>
<td><</td>
<td>9.15mm</td>
</tr>
<tr>
<td>H D</td>
<td>Fracture load 95.5 ton</td>
<td><</td>
<td>Fracture load 105 ton</td>
</tr>
<tr>
<td></td>
<td>fracture</td>
<td></td>
<td>fracture</td>
</tr>
<tr>
<td></td>
<td>7.7mm</td>
<td><</td>
<td>10.0mm</td>
</tr>
<tr>
<td>Bend fatigue</td>
<td>Bending stress 274MPa</td>
<td>=</td>
<td>Bending stress 274MPa</td>
</tr>
<tr>
<td></td>
<td>>2000×10^6 Cycle</td>
<td></td>
<td>>2000×10^6 Cycle</td>
</tr>
</tbody>
</table>

6.6 考察
6.1 性能比較試験結果について
今回はA・Bの2材料について性能比較試験を実施し
た。その結果繰り返し曲げ疲労試験結果は同等の評価で、
それ以外の試験結果はB材が数値的には良好な結果を呈し
ており、B材を選定した。以下に各試験結果に対する考察
を示す。

a) 硬さ・耐摩耗性測定試験結果について

硬さ試験の結果B材の方がビッカース硬さで約100程度
高い値を示しており、また衝撃式摩耗試験でもその硬さを
反映して、B材がA材より約5〜7倍の耐摩耗性を示した。

次にB材について実際使用されている普通レール、D H
H 370レールの同条件下での比較を行った。Table 11お
およびFig.4から普通レールの摩耗減量が1.2g、D H H 370
レールが0.3gとなっている。今回A材は0.1gであり、従
来レール材を上回る試験結果となっている。

Fig.4 Relation between hardness before test and wear

金属の摩耗については、その使用される環境や条件下に
よっては試験結果と実際とは異なった結果になる場合があ
るため、実際にレールを敷設してこれらの結果をフォロー
していく必要がある。

Table 11 Chemical composition and Vickers hardness of rails

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Y</th>
<th>HY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Normal rail</td>
<td>0.65</td>
<td>0.20</td>
<td>0.80</td>
<td>0.019</td>
<td>0.009</td>
<td>-</td>
<td>-</td>
<td>254</td>
</tr>
<tr>
<td>B High Si rail</td>
<td>0.70</td>
<td>0.88</td>
<td>1.31</td>
<td>0.023</td>
<td>0.010</td>
<td>-</td>
<td>-</td>
<td>305</td>
</tr>
<tr>
<td>C Cr-V alloy rail</td>
<td>0.74</td>
<td>0.32</td>
<td>1.32</td>
<td>0.020</td>
<td>0.012</td>
<td>0.78</td>
<td>0.13</td>
<td>347</td>
</tr>
<tr>
<td>D DH370 rail</td>
<td>0.80</td>
<td>0.23</td>
<td>0.97</td>
<td>0.016</td>
<td>0.028</td>
<td>-</td>
<td>-</td>
<td>385</td>
</tr>
<tr>
<td>E Tires(Tread temper)</td>
<td>0.59</td>
<td>0.25</td>
<td>0.71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>350</td>
</tr>
</tbody>
</table>

b) 動耐撃性測定試験結果について

数値的にはTable1でB材がA材を上回っているが、
このレベルでは同等の性能であると思われる。

本来、ハードウェアングとは焼入れのある母材に焼入れ
低いが耐摩耗性のある材料を硬化層として互いの欠点を補
4.2 耐摩耗性測定試験

(1) 試験方法
耐摩耗性測定試験は西原式摩耗試験機を用い、レールと車輪のすぺり、ころがり摩耗試験を行った。

* 試験条件
Fig.1に示す試験装置により以下の条件で行った。

- 荷重: 490 N
- すぺり率: 9%
- 回転数: 供試材（レール）800 rpm
 相手材（車輪）728 rpm
- 総回転数: 5×10^5 回

![Fig.1 Wear examination device](image)

(2) 供試材
レール材に4層、5パス、ビード長300mmで肉盛溶接した。なお実施した溶接方法および溶接条件をTable 1に示す。レール材の化学成分一例をTable 2に示す。

Table 1 Welding method and welding conditions

<table>
<thead>
<tr>
<th>Overlay material</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding method</td>
<td>PTA</td>
<td>MAG</td>
</tr>
<tr>
<td>Welding current(Amp)</td>
<td>170~190</td>
<td>180~220</td>
</tr>
<tr>
<td>Welding voltage(V)</td>
<td>20~22</td>
<td>20~22</td>
</tr>
<tr>
<td>Welding speed(cm/min)</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Shield gas</td>
<td>Ar</td>
<td>Ar+15%CO₂</td>
</tr>
<tr>
<td>Flow rate(l/min)</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Preheating temp(℃)</td>
<td>400~500</td>
<td>400~500</td>
</tr>
</tbody>
</table>

Table 2 An example of chemical composition of rails

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
<td>0.26</td>
<td>0.90</td>
<td>0.020</td>
<td>0.013</td>
</tr>
</tbody>
</table>

4.3 耐衝撃性測定試験

(1) 試験方法
試験方法はJIS Z 3111に示すシャルピー衝撃試験とした。

(2) 供試材
供試材はJIS Z 3111により製作したが、試験片の形状および寸法はJIS Z 2202の4号試験片とし、レール材についても試験片を製作した。

4.4 静的曲げ測定試験

(1) 試験方法
スパン1mで中心被載荷の実物3点曲げにより静的曲げ試験を行った。試験は頭部引張様式（HD: Head Down）、底部引張様式（HU: Head Up）とし、曲げ破断強度およびたわみ量を測定した。Fig.2に試験方法を示す。

![Fig.2 3 point bending test condition](image)

(2) 供試材
普通レールの60Kgレールを使用し、レール材頭部全長（15m）に渡り、有効厚み5m肉盛溶接し、規定のレール形状に加工した。なお実施した溶接方法および溶接条件はTable 1と同様である。

4.5 繰り返し曲げ疲労測定試験

(1) 試験方法
レール頭部を試験部としたスパン1mの実物3点曲げにより、最小応力30Mpa一定の部分片振りで行った。繰り返し速度は360cpmとし、繰り返し数2×10^6 回の時間強度で評価した。

(2) 供試材
静的曲げ測定試験の供試材と同様とした。

5 試験結果

5.1 硬さ測定試験結果
Table 3に硬さ測定試験結果を示す。また表中に普通レールと熱処理レールの硬さも示す。また、A・B材の溶接金属の化学成分の一例をTable 5に示す。
い合うという考え方であるので、今回同時に測定した普通レール材は16.5koulであり、上記の考え方を通じるものがあると考える。

c) 静的曲げ測定試験結果について

Head Up（底部引張）については、約200トンの荷重でも破断しなかった。実際に肉厚溶接したガードレールを考えた場合、肉厚溶接表面は車輪より塑性応力を受ける事になり、今回試験同方向の荷重の掛かり方となる。

Head Down（頂部引張）については、破断荷重でB材が105トンの測定値であるが、D H Hの基準値には届いていない。たとえば同じく2材が10mmでD H Hレールの基準値を満足している。破断した後の試験片では、塑性変形した痕跡は見られなかった。

d) 鍛造曲げ疲労測定試験について

A・B材とともに当初の目標であった曲げ応力274MPaで200万回を満足した。

ここで溶接レールの実物曲げ疲労試験データについて参考資料（Fig.21）を用いて説明する。実物曲げ疲労試験において目標値274MPaで200万回以上の繰り返し数が設定されている。この数値は各種溶接接続部の疲労強度からもたらされたものであるが、パッキーデータはFig.5に示した新幹線板付トンネル内に5年間敷設されていた合金鋼レールから求められた実際応力約108MPaがその根拠となっている。

すなわち腐食の激しいトンネル内に敷設されていたレールの疲労強度は、約108MPaであり、これ以上の疲労限を有していれば实用的には破損は生じないと思われる。

一方、溶接レールの目標疲労限は274MPaに設定されており、溶接レールの実測疲労限の下限値から求められた一種の品質管理目標値であり、前記新幹線の実働応力よりも倍以上の値になっており、十分安全サイドの数値と考えることが出来る。

7 結 言

ガードレール等の構造材料の交換時期の延期を図ることを目的として、室内試験で肉厚溶接材料選定のための比較性能試験を実施した結果と従来レールとの比較においてB材を選定した。以下にその内容を要約する。

(1)レール材の耐摩耗性の評価に用いられていた西原式摩耗試験で、B材が従来レールやA材よりも優れた結果が得られた。

(2)硬度面の評価で重要である実物曲げ疲労試験において、目標とした274MPaで200万回を満足した。この数値は腐食の激しいトンネル内レールの疲労強度約108MPaを上回るものであり、また溶接レールの一種の品質管理目標値を満足するものである。

謝 辞

本研究開発の論文掲載を許可戴いた東日本旅客鉄道株式会社技術開発推進部殿に感謝致します。
また、レール材に関する資料の御提供や御助言を戴きました新日本製鐵株式会社八幡技術研究室内野耕一主査研究員、株式会社九州テクノリサーチ影山英明部長殿に感謝致します。

参考文献

1）鉄鋼協会講演'78-S905 高性能鋼材レールの摩耗特性 新日本製鐵株式会社八幡技術研究室 影山英明、杉野和男、梧木弘毅
2）第35回腐食防食討論会講演集 1988.10 (P.225-228) 渋谷江行、溝口茂