Synopsis:

The CPC high-speed steel roll manufactured with the combination of CPC technology and NGW (Narrow Gap Welding) technology has been widely used at the rolling process for steel materials, because it has the manufacturing cost competitiveness and the higher performance compared with the other roll manufacturing processes. Particularly, the CPC special steel work roll recently developed for roughing mill has shown over 3 times long life compared to the other process rolls. Recently, the roll has been used under rolling conditions of the lower temperature and higher load for the purpose of increasing global competitiveness of roll maker. To respond to the needs of customers, it becomes important that the welding joint part in the roll shaft must be assured the higher intensity and higher reliability. In this study, the stress in roll shaft is computed and the stress distribution is made clear. Also, the reasonable welding joint position and the optimal shape structures for joint welding part are investigated and discussed.

1. 緒言

当社が世界で初めて独自開発した CPC(Continuous Pouring process for Claddings)製造法1,2と特徴ある狭開先溶接技術3,4,5を用いて製造した CPC ハイスロールは、形鋼、棒鋼、線材といった鋼材の中間・仕上げ圧延工程で幅広く使用されている。特に、狭開先溶接軸継ぎ技術を適用することにより、遠心鍛造法に対する製造コスト面での障害を解決し競争力を高めた。軸継ぎ溶接適用前の従来の方法は、主に複合一体ロールとして製造され、軸部を CPC 材から削り出すしかなく、製品歩留りが低くコストが大きくかかった。それを解決するため、Fig. 1 に示すように CPC 後の複合材より胴部を
多数本取りして、狭開先溶接で軸と接合する製造法を適用した。最近、新CPC製造工法と熟処理による組織制御法を適用した粗圧延用の特殊鋼ロールが開発され、既存の合金ダクタイル鍛鉄ロールやセミハイスロールに比べて軸周り耐摩耗性に優れ、圧延メーカーの直近のニーズである低層・高荷重圧延用の高寿命ロールとして認められている。

また、圧延メーカーでは、更なる国際競争力の向上や高強度鋼種への転換及び低炭素社会への貢献のため、更なる省エネ圧延を実施している。特に、圧延工程の中で圧延スプードが遅く、圧延荷重が非常に高い粗列においては、主に合金ダクタイルが使用されてきたが、CPCロールの芯材であるSCM440圧延材に比べて軸材の強度が低く、鍛造材であるため、客先の低温・高荷重圧延や高耐熱化を図る上で、破断事故に至る場合が多かった。したがって、軸接合した粗列用CPC特殊鋼ロールにおいては、軸部強度保証として、安全設計により更なる信頼性を高める必要性がある。そこで、本研究では、有限要素解析（FEM）を導入し、軸内部の応力を解析すると共に応力分布を明らかにし、軸接合位置と軸接合部構造の最適化を図った。

2. 解析方法および解析モデル

本研究では、CPC法で製造した棒鋼・線材用粗圧延ロールを解析対象として、解析モデルを設計した。まず解析により、実機操業時の圧延荷重とねじりモーメントを考慮し、軸部の応力分布および応力集中部を求めた。

2.1 駆動トルクの影響について

Fig.2に3次元解析モデルを示す。圧延時に発生するねじりモーメントTＤにより、軸部ではせん断応力が生じる。このときのねじりモーメントが軸内部の応力分布に及ぼす影響を調査した。

ロール圧延面の中心で圧延荷重Fと圧延トルクTＰを与える。このとき圧延トルクTＰは駆動部の軸端にかかるトルクTＤと等しい。また、固定箇所は、駆動側(D/S)では軸端で軸方向および軸垂直方向を、非駆動側(F/S)では軸端で軸垂直方向と円周方向とした。

Fig.3の(a)に軸部と軸接合部の開先形状を示す。軸接合時には軸部と軸部の中心合わせのため、コア部とされる部位が存在する。そのコア部より外周へと肉盛溶接を行い、軸を接合する。今回、このコア部に注目して解析を行った。

Table1に、軸接合有無とトルク有無での解析結果を示す。駆動トルクがコア部のせん断応力に及ぼす影響は小さいことが分かった。

Table1 Effect of driving torque on shear stress in core area

<table>
<thead>
<tr>
<th>Section</th>
<th>Without welding joint</th>
<th>With welding joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/S</td>
<td>F/S</td>
<td>D/S</td>
</tr>
<tr>
<td>Torque(TD≠0)</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>No Torque(TD=0)</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

2.2 解析モデル

せん断応力に及ぼす駆動トルクの影響が小さいことから、解析モデルは2次元平面で簡易化できる。したがって、Fig.3に示すように、駆動トルクを与えずに、圧延荷重のみを圧延部に与えた。軸部では軸方向と軸垂直方向を固定する。この2次元解析モデルを用いてロール軸部及び接合部の応力分布を求め、軸接合部へ

Fig.1 Schematic diagram showing manufacturing method for CPC work roll

Fig.2 Three-dimensional analytical model for roll

Fig.3 Two-dimensional analytical model for shaft jointed roll
の影響を明らかにした。また、軸継ぎがある場合、コア部のサイズ、位置及び形状と応力分布との関係を調べ、軸継ぎの設計における基礎的な知見を提供した。

3. 解析結果及び考察
3.1 軸首部の応力分布と溶接部の位置について
Fig.3の2次元モデルにより求めたロール内部の応力分布をFig.4に示す。本来、製品の歩留りを向上するためには、軸接合位置をできるだけ胴部端部に近づけることが望ましい。しかし、首部（ネック部）に応力集中が起きるため、安全の観点から適切な接合部位置を把握する必要がある。ここでFig.5にロールの胴部端部からの距離と表面応力との関係を示す。軸接合位置を胴部端部から40mm離れた場合は、最大応力は溶接区間内に入ることが確認できる。そこで、接合部を胴部端部から60mm離れると、最大応力は40%減率安全係数は2.5倍になることが分かった。

軸継ぎ溶接部の位置と最大応力との関係をTable2に示す。接合部の中心を胴部端より40mm離れたとき、安全係数は0.69であり危険側の状態であった。これを60mmに変更することで、安全係数は1.17になった。このことから、より高い安全係数を確保するためには、圧延条件を明確に把握した上で労働解析を行い、適切な溶接位置を決定する必要がある。

Table2 Effect of welding position on maximum stress in welding center part

<table>
<thead>
<tr>
<th>Welding position (conventional)</th>
<th>Welding position (moved 20mm to axial direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{weld} (MPa)</td>
<td>σ_w (MPa)</td>
</tr>
<tr>
<td>308</td>
<td>215</td>
</tr>
<tr>
<td>184</td>
<td>215</td>
</tr>
</tbody>
</table>

σ_{weld}: Stress in welding center part σ_w: Effective fatigue strength

3.2 ロール内部の応力分布に及ぼす軸接合有無の影響
中心コア部（未溶接部）の有無がロール内部の応力分布に及ぼす影響を調査した。まず、Fig.6に解析結果を示す。コア部があるとき、溶接スタート部で（Fig.7の①）の応力はコアがない場合より2.4倍高くなることが確認でき、最大発生応力を緩和させるための適切なコア部の設計を行った。

3.3 コアのサイズと応力分布との関係
溶接スタート部の応力に及ぼすコアのサイズの影響を調査した。Fig.7に示すように負荷がかかりコア部は変形を受ける。コア下部（Fig.7の①）で引張り応力が生じ、上部（Fig.7の②）では圧縮応力が発生する。このように溶接スタート部に応力集中が起こることがわかり、綾返し圧縮と引張の応力が交互にかかることで溶接スタート部での応力が疲労強度を超えると、疲

Fig.6 Effect of core existence on stress distribution in core part

Fig.7 Deformation of core
Fig.8 Analysis for crack growth direction

Table3 Influent of core size on maximum stress

<table>
<thead>
<tr>
<th>Size(mm)</th>
<th>b in Fig.7</th>
<th>Maximum stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>131</td>
<td>-161</td>
</tr>
<tr>
<td>30</td>
<td>105</td>
<td>-122</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>-113</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>-108</td>
</tr>
</tbody>
</table>

3.5 内部コアの形状と応力分布

Fig.10 の有限要素モデルを用い、コアの形状を変化した時の溶接スタート部に発生する最大応力を調査した。その結果を Fig.13 に示す。コアの形状を a) から

Fig.9 Influence of core position and stress distribution

Fig.12 Analytical model for different core shape
表4 Chamfer size of core part

<table>
<thead>
<tr>
<th>Chamfer size (C/mm)</th>
<th>Contact stress (σ_C (MPa))</th>
<th>Stress in welding start area (σ_w (MPa))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>103</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>143</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>205</td>
<td>60</td>
</tr>
</tbody>
</table>

3.6 応力拡大係数 (ΔK) とき割れ破下限値 (ΔK_th) との関係

有限要素法を用いて、コア部の直上及び直下である溶接スタート部での応力拡大係数の解析を行った。引張りにより生じた応力拡大係数は式(1)を用いて求めた。Fig.15 のモデルを利用して、式中のき裂先端からの距離 (r) と応力 (σ, σ_y, τ_y) を有限要素法によって計算し、応力拡大係数を求めた。Table5 で計算の結果を示す。

\[K = \sqrt{2\pi r \left(\frac{\sigma}{\sigma_y} \right)} \]

表5 Change of stress intensity factor

<table>
<thead>
<tr>
<th>r (mm)</th>
<th>σ_x (MPa)</th>
<th>σ_y (MPa)</th>
<th>K_x (MPa*mm^0.5)</th>
<th>K_y (MPa*mm^0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>11.86</td>
<td>7.79</td>
<td>3.13</td>
<td>2.06</td>
</tr>
<tr>
<td>0.23</td>
<td>8.99</td>
<td>5.28</td>
<td>3.36</td>
<td>1.97</td>
</tr>
<tr>
<td>0.35</td>
<td>7.46</td>
<td>3.66</td>
<td>3.41</td>
<td>1.67</td>
</tr>
<tr>
<td>0.46</td>
<td>6.64</td>
<td>2.80</td>
<td>3.41</td>
<td>1.48</td>
</tr>
<tr>
<td>0.58</td>
<td>6.13</td>
<td>2.28</td>
<td>3.62</td>
<td>1.35</td>
</tr>
<tr>
<td>0.69</td>
<td>5.73</td>
<td>1.86</td>
<td>3.71</td>
<td>1.21</td>
</tr>
<tr>
<td>0.81</td>
<td>5.47</td>
<td>1.52</td>
<td>3.82</td>
<td>1.06</td>
</tr>
<tr>
<td>0.93</td>
<td>5.29</td>
<td>1.27</td>
<td>3.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Fig.15 Analytical model for K

Fig.16 Stress intensity factor K

Fig.15 に示すように、溶接スタート部をき裂先端部と見なし。応力の分布が急激に変化するため、き裂先端に極近い要素の計算結果は無視し、多少離れた要素の結果を使った。Fig.16 にき裂先端からの距離 (r) と応力拡大係数 (K) との関係を示す。r が限りなく 0 に近づいたときの値を 2 次関数の外挿によって求め、応力拡大係数 (K) を算出した。Fig.16 の結果から、溶接スタ
オート部での応力拡大係数（\(K \)）は3.85 MPa·m^{1/2}で、\(\Delta K = 2K = 7.70 \text{ MPa}·m^{1/2} \)である。
Fig.17のき裂伝は下限値（\(\Delta K_{th} \)）は8 MPa·m^{1/2}であるので、安全係数は1.04になる。

同じ方法で改善後の形状（Fig.13のb）に対しても有
限要素法で計算し、その結果をTable 6に、溶接スタ
ート部の応力拡大係数をFig.18にそれぞれ示す。Fig.17で
調べた溶接スタート部の応力拡大係数（\(K_{1} \））は1.23MPa
\cdot m^{1/2}で、\(\Delta K = 2K = 2.46 \text{ MPa}·m^{1/2} \)である。従って、応力
拡大係数範囲（\(\Delta K \)）は3分の1に小さくなり、安全係数
は3.25と高くなった。

4. 結論
これまでに得られた調査結果を要約すると、次の通
りである。
1）駆動トルクの有無はせん断応力に影響しないこと
が分かった。また、ロールの内部応力分布は二次
元解析モデルを用いたシミュレーションにより解
析可能であることが確認できた。
2）ロール軸部と胴端部を繋がるR終端部で最大応力
が生じるため、溶接部は最大応力発生部を避ける
ことによって、より高い安全係数の確保が可能で
あることを確認した。
3）内部コアがある場合は、溶接スタート部で応力集
中が生じ、コア無の場合と比べると応力は2.4倍
高くなることが分かった。
4）内部コアのサイズが小さいほど、溶接スタート部
の応力は少ないことが分かった。また、コアは胴
端部から離れたときと形状が大きく変わるため、溶接ス
タートの応力は増加する傾向を示した。
5）内部コア部の形状と溶接スタート部の応力との関
係を明らかにし、最適な軸組ぎ部の形状を決める
ことができた。
6）応力拡大係数範囲（\(\Delta K \)）を求めることができ、き
裂伝は下限値（\(\Delta K_{th} \)）との関係から簡単にき裂進展
状態を把握することができた。

当社は更なる軸接合部の強度向上及び高負荷圧延
のニーズや低炭素社会への貢献のため、現在の溶接接合
方式から超省エネ型摩擦接合方式へ変更を検討してい
る。その成果に対しては次回ご報告する予定である。

参考文献
1）坂本、玉川、津田、森高：フジヨー技報、No. 1 (19
93) 9
2）坂本：フジヨー技報、No. 4 (1996) 20
3）ロールの製造方法、公開特許公報(A)、特願2004-1
42605
4）大野、芳谷、尾崎：フジヨー技報、No. 10 (2002) 48
5）大野、悠、尾崎：フジヨー技報、No. 14 (2006) 26
6）姜、園田、村木、永吉：フジヨー技報、No. 15 (200
7) 38
7）佐竹、平坂、持田、浜野：松江工高専研究紀要 No.
8）浅見克敏他：材料、32 (1983) 64