技術解説

国立米子工業高等専門学校 機械工学科 教授

> 工学博士 大塚 茂 Shigeru Ohtsuka



エジェクタ効果による層流吸い込み部を 形成した低騒音軸流ファンの開発

Development of Low-Noised Axial-Flow Fan Motor with the Inlet Air Gap Forming at Peripheral Ring Surfaces by Using the Ejector Action Under Laminar Flow Condition

## 要 旨

近年、WS、PC に代表される情報関連機器は、CPU 処理能力の向上に伴い発熱量が増加し、さらに筐体 の小型化や機器の高機能化により、電子部品等の発 熱体の集約密度も増大している。このような背景の もと、機器に搭載される冷却用ファンにも小型で背 圧下における高い送風性能をもったファンが要望 されてきた。また一方で、これらの情報関連機器は、 今やオフィスや一般家庭にも複数台普及し騒音の 主発生要因のひとつとなっており、搭載されるファ ンの騒音低減に関しても非常に強い要望がある。

これら送風性能の向上と低騒音化という相反す る課題に対して、この度、小型軸流ファンの外周に 設けられた環状壁に空隙を設け、この空隙からエジ ェクタ効果により空気を吸い込むという手法を用 い、ファン特性を大幅に向上させることに成功した。 この新規設計技術により、従来の軸流ファンで問題 となっていた翼端漏れ渦の発生や翼負圧側の境界 層剥離による後縁伴流渦が大幅に軽減され、高背圧 下における風量を最大で 30%程度増加させると共 に、約4dB-A の低騒音化も実現可能である。

## 1. 緒 言

近年、WS、PC に代表される情報関連機器は、CPU 処理能力の向上に伴い発熱量が増加し、さらに筐体 の小型化や機器の高機能化により、電子部品等の発 熱体の集約密度も増大している。このような背景の もと、機器に搭載される冷却用ファンにも小型で背 圧下における高い送風性能を有するファンが要求 されてきた。また、これらの情報関連機器は、今や オフィスや一般家庭にも複数台普及し騒音の主発 生要因のひとつとなっており、搭載されるファンの 騒音低減に関しても非常に強い要望がある。

従来より、軸流ファンの高性能化および低騒音化 に関しては、深野らを始めとして各種研究(1)(2)(3)が 行われているが、これらは対象が 600mm 程度(レ イノルズ数10<sup>6</sup>程度)の比較的大型のファンであっ た。一方、情報関連機器に汎用で搭載されてきたボ ックス形の小型軸流ファンの高性能化および低騒 音化については、釜谷ら<sup>(4)</sup>や伊藤ら<sup>(5)</sup>の研究結果が 報告されている。これら報告は、サイズが 92mm~ 120mm 程度(レイノルズ数 10<sup>4</sup>程度)の小型軸流フ アンを対象とし実験的研究を主とした事例であり、 翼端の隙間形状や翼パターン・翼形などのファン形 状の変化に特化したものであった。また、笹島ら<sup>(6)</sup> は、小型軸流ファンのケーシング形状(ベルマウス を構成する)の非軸対称性が、流入空気の方向や速 度に偏差を生じさせ、これにより翼周りの渦構造が 変化し、騒音を悪化させることなどを詳細な解析結 果により報告している。

そこで本研究報告では、上記背圧下における小型 軸流ファンの送風性能の向上と低騒音化という相 反する課題を解決すべく、エジェクタ効果を活用し た低騒音軸流ファンの開発を行った。以下にその開 発結果を報告する(登録特許<sup>(7)(8)(9)</sup>参照のこと)。

#### 2. 開発品および実験装置概説

この度、開発した小型軸流ファンの外形形状を図 1 に示す。本開発品は、外形寸法 92×92×25.4 mm の DC ブラシレス軸流ファンモータであり、ファン、 モータ、軸受等の主要部品の大半を従来品と共用化 し、ベルマウスを成す環状壁部が一体的に樹脂成形 されるケーシングのみを変更することで、標準化お よび低コスト化を図っている。



# Fig.1 Outside view of developed low-noise fan motor

小型軸流ファンの送風性能としては、静圧-風量 特性(P-Q 特性)を JIS B8330、AMCA 210-74 に準 拠した汎用的なダブルチャンバ方式の P-Q 特性測 定装置にて測定した。流量は、ダブルチャンバ内の ベンチュリノズル前後の圧力差から算出し、圧力は 軸流ファン取り付け側チャンバ内の静圧を測定す ることで求めている。

また、騒音については、無響室内(暗騒音 20dB-A 以下)にて、小型軸流ファンを ISO10302 に準拠し たハーフサイズの騒音計測用プレナムに取り付け、 各背圧条件下、ファン吸い込み口から 1m の位置で マイクロホンを用いて騒音計測し、A 特性補正を行 っている。

#### 3. 騒音分類と一般的な騒音低減技術

一般的によく知られているように、小型軸流ファ ンの騒音には図 2 に示されているような種類の騒 音源がある。この中でファンやベルマウスなどに起 因する騒音は、空力騒音と称し、その内訳は大別し て離散周波数騒音と広帯域騒音(別名乱流騒音とも 言う)の2種類に区別される。

離散周波数騒音には、ファンの回転により誘起さ れる圧力場がファンと共に回転することによって 生ずる動翼回転騒音(いわゆる Nz 音)と、静翼・ 支柱等の障害物が流れの上流あるいは下流側にあ る場合に発生する干渉騒音があり、この二つの要因 が支配的である。この二つの要因については、ファ ンと静翼・支柱といった構成が軸流ファンには必要 不可欠である以上、基本的に発生回避は不可能であ る。従って、あとは対策として例えば弦節比を小さ くするなど、いかに発生騒音のエネルギーレベルを 小さくするか、あるいは騒音伝播の過程で減衰させ るか、などといったファンや支柱の組合せ設計、あ るいは使用される材料デザインに懸かっている。

次に広帯域騒音については、動翼の乱流境界層や その境界層が剥離した後の翼面上の圧力変動、また 翼端における漏れ渦や翼後縁から放出される伴流 渦等がその主要因として考えられる。これらはいず れも、直接的に動翼あるいはベルマウスから発生す る渦音を要因とするため、ファン・ベルマウス等の デザインの工夫により渦発生を抑制することで低 減も可能である。なお、具体的な騒音低減技術に関 しては、前述の研究報告や大塚・藤中ら<sup>(10)(11)</sup>の初 期の研究報告を参照されたい。



Fig.2 Classifications of fan-motor's noise

#### 4. 開発品の構造的特徴

この度、開発した軸流ファンは、従来の小型軸流ファ ンモータとの形状的互換性を維持しながら、従来品で は対応しきれなかった、送風抵抗の大きい高背圧下で の特性を大幅に改善することに成功しており、送風抵 抗の変動に対しても極めて優れた安定性を有している。 以下に、開発品の構造的特徴を示す。

図 1 に示すように、開発品のケーシング形状は従来 品とは異なり、環状壁部には外周からの空気の流入を 可能にする空隙が、回転軸方向に4層設けられている。 本環状壁の外周形状は、真円形状でも構成は可能で はあるが、従来品との形状的互換性を維持するため図 のように四辺を均等に削除した非軸対称形状を採用し、 環状壁部に張出しの無いボックス形状を実現している。 なお、環状壁の空隙部を支持するスペーサは、強度面 を考慮し、環状壁の厚みが薄い四辺中央部と、四角コ ーナー部に計 8 箇所設けられている。さらに、四辺中 央部のスペーサは環状壁外周部からわずかに外側へ 張り出させることで、取付け用ネジを使用しないスナッ プイン方式の取付けにも対応できるように工夫されてい る。

#### 5. 開発品の設計原理

以下、本開発品の設計原理とその空隙部の最適化 について説明する。

5.1 エジェクタ効果を利用する設計原理

図 3(a)は、従来ファン回転時における流れの状態を 示している。軸流ファンモータには、図に示すように半 径方向の翼端と環状壁との間に隙間があるため、正圧 側から負圧側への漏れ流れが生じ、翼端負圧側に複 雑な流れを伴う渦が生じる。この渦は、翼端漏れ渦と呼 ばれ、特に背圧下における軸流ファンの送風性能や騒 音特性にとって課題となる翼端近傍の渦発生、あるい は翼負圧面側の境界層剥離による後縁伴流渦の発生 などに深く係わることが知られている。翼周りの渦発生 や翼負圧面側の剥離現象は、流路内の送風抵抗によ りファンにある程度の背圧が加わった状態で顕著に表 れ、送風性能や効率を低下させると共に、渦発生や流 れの剥離に伴う騒音も増加する。近年は、機器内の高 密度実装化に伴い筐体内の空気の送風抵抗が増加し、 上述したような高背圧条件下での使用が頻繁になって きている。開発品はこの領域での特性の改善を目的と した改良が加えられている。

図 3(b)に、本開発品ファン回転時における流れの状態を示している。本開発品には、図 1 の外観図に示すように、環状壁の回転軸方向に 4 層の空隙が設けられ、 主流のエジェクタ効果により生じた負圧が、空隙を通り 外周から吸い込まれる空気流を促進し、翼端漏れ渦や 翼の失速現象の原因ともなる翼負圧面の境界層剥離 を抑制する。特に、広帯域騒音の主要因である翼端漏 れ渦の発生が抑制され、同時に境界層剥離による翼の 後縁伴流渦の発生も抑制できることから、空力騒音特 性および送風性能共に優位となる効果が期待できる。 本設計原理と前記構成により、開発品は、翼周りの渦 発生や翼の境界層剥離現象が抑制され、従来は効率 が大きく低下していた高背圧条件下においても、送風 性能と騒音特性を共に大幅に改善することに成功し た。



Fig.3 Principle illustration for ejector action of developed fan motor ((a) current type vs.(b) developed type)

## 5.2 空隙の最適化検討

開発品は、背圧条件下においてもファンの性能を最 大限に引き出すため、空隙部に対しては以下に示すよ うな最適化検討を行っている。

5.2.1 空隙幅 wによる吸い込み流れの層流化検討

図4(a)、(b)は空隙内の空気の流速分布を示す概略 図である。主流のエジェクタ効果により、空隙を通って 外周から吸い込まれる空気流は、空隙幅 wの大小によ ってその速度分布が図に示すように変化する。空隙幅 wを広くし過ぎると、図4(b)に示すように空隙内の流速 分布は乱流状態となり、その壁面近傍には乱流渦が発 生する。この乱流渦が、環状壁内周に流入した際に、 翼端漏れ渦の生成や境界層剥離を助長するため、ファ ンの空力性能を阻害し、場合によっては特性の悪化が 懸念される。このため開発品は、空隙幅 w を吸い込み 流れが図4(a)に示す層流状態となること、および壁面 摩擦による流入抵抗が十分小さいこと、の両者を念頭 に置いて最適化検討がなされている。空隙内の流れが 乱流渦を発生しない状態、つまり層流状態に制御する 条件としては、式(1)で表される。

$$w \leq \frac{v \cdot R_{ec}}{\mathbf{V}} \qquad \cdots (1)$$

ここで、式中においては、w:空隙幅、v:吸い込み空気 流速、v:空気の動粘度、Rec:臨界レイノルズ数をそれ ぞれに表す。今回の開発品では、最適化検討の結果、 空隙幅 wを最大で 2.0mm(Rec=2000 程度にて算出) に設定し、特性の向上を図っている。

5. 2. 2 半径方向寸法 / に対する空隙からの吸い込 み空気量の均等化検討

本開発品は、従来の軸流ファンとの形状的互換性を 確保するため、環状壁の外周形状としては四辺を均等 に削除した非軸対称形状を採用し、環状壁部の張出し の無いボックス形状を実現している。しかしながら、図 5 (a)に示すように、空隙幅 w を外周形状全てにおいて 統一したままボックス形状にすると、環状壁の半径方向 寸法 L が短い部分では、壁面摩擦による流入抵抗が 他の部分より小さくなることで内外周の圧力差 Δp が減 少する。一方逆に、その箇所における吸い込み空気量 は大きくなり、結果的に内周側から見た吸い込み流量 は周方向で変化し、不均一な流入状態(つまり偏流が 存在)となるため空力・騒音特性的には好ましくない。 そこで本開発品は、図 5(b)に示すように、環状壁の半 径方向寸法 L が短い部分では意図的に空隙幅 w を絞 り込むことで吸い込み空気量を全周方向で均等化し、 非軸対称形状の空力・騒音特性への影響を打ち消し ている。





ここで、上記吸い込み空気量を等しくする条件として、 空気の慣性力と体積力、空隙内入口・出口での空気流 の乱れ等を無視するとし、図 6 に示すようなポアズイユ 流れによる空気の流速分布を仮定すれば、ナビエ・スト ークスの方程式、およびニュートンの粘性方程式より式 (2)が導出される。

$$\mathbf{V} = \frac{1}{2\eta} \cdot \left( -\frac{\mathbf{\Delta}p}{L} \right) \cdot \left( y_2 - wy \right) \qquad \cdots (2)$$

これを空隙幅 w の長さで定積分すると、以下に示す式(3)が導出される。

$$Q_w = \int_0^w \mathbf{v} dy = \frac{w_3}{12\eta} \cdot \left(\frac{4p}{L}\right) \qquad \cdots (3)$$

ここで、v:吸い込み空気流速、 $Q_w$ :吸い込み空気流 量、w:空隙幅、L:環状壁の半径方向長さ、 $\eta$ : 空気 の粘性係数、 $\Delta p$ :内外周の圧力差を示す。従って、吸 い込み空気流量  $Q_w$ を一定にする条件式は、以下の 式(4)となる。



Fig.5 Schematic illustration of the flow transition with changing the inlet air gap w for radius length L ((a) constant w vs.
(b) transformed with L)



Fig.6 Illustration for velocity distribution in the inlet air gap with Poiseuille flow

図7は、この最適化式に則り、環状壁の半径方向長さ *L*に従い空隙幅 w を適正化したボックス形状ファンと、 空隙幅 w が一定(2.0mm)のボックスファンとの各種特 性を比較した結果である。図より、最適化品と空隙幅一 定の角型ファンとの特性を比較すると、風量で最大 10%程度の増加(@静圧 2 mmH<sub>2</sub>O)、騒音で約 2dB-A の低減(風量@0.4~1.25m<sup>3</sup>/min の広範囲にて)、さらに モータ効率を含むファンモータの全効率 η は、10%の 向上(最高全効率が9.8%→ 10.8%)などの性能向上が 見られた。また、環状壁の外周形状に丸型形状を採用 した初期オリジナルモデルとの比較においても、最大 風量付近の騒音が幾分高くなる以外の性能差は無く、 背圧下の実使用領域におけるボックス形状化による特 性悪化を、ほぼ改善することに成功している。



Fig.7 The flow rate vs. Static pressure, Noise level & Total efficiency (Compared with Circle type and Squared &Constant w type, Squared & Transformed with L type)

## 6. 開発品の送風性能および騒音特性

図 8 および表 1 に、前記最適化に対応させた開発品 の送風性能と騒音特性を従来品と比較し表している。 図および表に示す通り、本開発品は最大静圧と最大風 量は従来品より若干低下するものの、近年、特に使用 が増大している高背圧下における性能が高く、一般的 な使用域である最大風量の 30~70%においては約 30%もの風量増加と、4 dB-A 程度の騒音低減を同時 に実現する結果となった。また、DC モータ部の効率を 含んだ軸流ファンモータの最高全効率  $\eta$  は、従来品 に比較して約 10%向上し、特に高背圧下で使用した場 合には従来品比で約 18%の効率向上が確認されるに 至った。



Fig.8 The flow rate vs. Static pressure, Noise level & Total efficiency (Compared with Current type and Developed type)

一方、現実的な置換え用途を想定した風量・静圧が 規定された送風条件下で比較した場合には、開発品 は従来品よりファン回転数の低減が可能なため、最高 で6~7dB-A程度の騒音低減と、10%程度の消費電力 低減を同時に実現する画期的効果が期待できる。その 上、開発品は、従来品との形状的互換性を確保してお り、従来品からの置換えにより、筐体セット側の部品を 一切変更することなく、送風性能の向上や低騒音化、 あるいは低消費電力化等の効果を得ることが可能とな る。

 Table 1
 Comparison of Characteristics

|                                                                        | 開発品                                                                    | 従来品                                                      | 従来品比                               |
|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|
| 風量                                                                     | 0.88 m³/min                                                            | 0.67 m³/min                                              | +30%                               |
| $(at 2mmH_2O)$                                                         |                                                                        |                                                          |                                    |
| 騒音                                                                     | 42dB-A                                                                 | 46dB-A                                                   | -4dB-A                             |
| (at 0.7m <sup>3</sup> /min)                                            | 420D 11                                                                | 1000 11                                                  | ful II                             |
| 最高効率                                                                   | 11 10/                                                                 | 10 10/                                                   | + 10,00/                           |
| (含むモータ効率)                                                              | 11.170                                                                 | 10.1%                                                    | +10.0%                             |
| 最大風量                                                                   | 1.40 m³/min                                                            | 1.50 m³/min                                              | -6.5%                              |
| 最大静圧                                                                   | $4.00 \text{ mmH}_2\text{O}$                                           | 4.05mmH <sub>2</sub> O                                   | -1.2%                              |
| 騒音<br>(at 0.7m <sup>3</sup> /min)<br>最高効率<br>(含むモータ効率)<br>最大風量<br>最大風量 | 42dB-A<br>11.1%<br>1.40 m <sup>3</sup> /min<br>4.00 mmH <sub>2</sub> O | 46dB-A<br>10.1%<br>1.50 m³/min<br>4.05mmH <sub>2</sub> O | -4dB-A<br>+10.0%<br>-6.5%<br>-1.2% |

# 6.結 言

以上のように、機器や筐体の小型化・高密度化に 対応し、高背圧下における従来の軸流ファンの特性 を大きく上回る DC ブラシレス軸流ファンモータの 開発を実施し、その送風性能や騒音特性の優位性が 実験的に確認された。本開発品の DC ブラシレス軸 流ファンモータは、この度の外形寸法 92×92×25.4 mm の製品開発を始めとし、従来品と同様な 40×40×20 mm~120×120×38 mmの各ボックスサ イズをラインナップし、ES (Eco Silent) ファンと してシリーズ化され既に量産化されている。

以下、本開発品の特徴と性能向上結果を列記する。 (1)高背圧下(送風抵抗大の場合)における風量を従 来品比で最大 30%増加。

(2)高背圧下の騒音を従来品比で最大 4dB-A 低減。
(3)高背圧下の全効率を従来品比で最大 18%向上。
(4)従来のファンモータとの置換え可能な角型形状を採用。さらに、環状壁に 4 層の空隙を設けた特殊な構造ながら従来品と同等の生産性を確保。

## 参考文献

- Fukano, T., et al, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol.51 No.466 (1985), pp.1825-1832
- Fukano, T., Turbomachinery, Vol.13, No.12 (1985), pp.730-738
- Fukano, T., et al, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol.69 No.685 (2003), pp.2010-2016
- Kamaya, S., et al, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol.56 No.531 (1990), pp.3408-3412
- Ito, T., et al, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol.72 No.715 (2006), pp.670-677
- Sasajima, T., et al, Transactions of the Japan Society of Mechanical Engineers, Series B, Vol.77 No.774 (2011), pp.255-263
- Ohtsuka, S., United States Patent, Patent Number: 5707205(Date of Patent: Jan. 13, 1998)
- Ohtsuka, S., and Fujinaka, H., United States Patent, Patent Number: 6132171(Date of Patent: Oct. 17, 2000)
- 9. Ohtsuka, S., and Fujinaka, H., Japan Patent, Patent Number: 3483447(Date of Patent: Oct. 17, 2003)
- Ohtsuka, S., et al, National Technical Report, Vol.37, No.2 April 1991, pp.181-188
- Fujinaka, H., et al, Matsushita Technical Journal, Vol.44, No.2 April 1998, pp.137-141