技術解説

き裂材の疲労限度特性 Δ*K*_{th} に おける特異な材質依存性

Singular Dependency of Material Property in ΔK_{th} of Metal Fatigue Limit in Cracked Specimen

1. はじめに

事故の原因の80%は、金属疲労であるといわれて いる1)。金属疲労に対する限界強さは、平滑材では 疲労限度とよばれ、重要な材料定数の一つである。 その疲労限度は、1結晶粒程度(10µm-100µm)の 発生した疲労き裂が伝ば後停留できる限界の応力 (MPa の次元をもつ) に対応していることが多い²⁾。 一方、Compact Tension 試験片を用いた長いき裂の 疲労き裂伝ぱ特性は、き裂先端近傍の弾性特異場の 強さを表す応力拡大係数の幅 ΔK が駆動力として用 いられ、疲労き裂伝ばがするかどうかの敷居値とし て、*ΔK*_{th} という材料定数 (MPa√mの次元をもつ) が用いられる³⁾。以上から、ある材料を種々の形状 で繰返し荷重で用いる場合の疲労安全限界は、種々 の寸法のき裂を持つ部材の ΔKth で評価できること がわかる。そこで、本解析記事においては、ΔKth に 及ぼす材質依存性について述べる。

2. 疲労き裂伝ぱメカニズム

安定的に伝ばしている疲労き裂の先端では、鈍化 と再鋭化が連続的かつ相似的に繰返されている⁴)。 図 1 に疲労き裂の開閉口過程の走査型電子顕微鏡 SEM 写真を示す⁴)。1~4 はき裂閉口過程であり、 5、6 はき裂開口過程である。き裂先端前方では、 き裂面の上下に多数のすべりのこん跡が見られる。 このことから、すべりはき裂の開閉口時に交互に作 動したことがわかる。図 2 に疲労き裂の伝ぱモデ ルを示す⁴)。図中の転位記号の横に付した英数記号 は、荷重サイクルにおける位置を意味する。(c)の ように、負荷過程でき裂先端から転位が射出され、 き裂は開口する。やがて、転位は加工硬化(または 九州大学大学院 工学研究院 教授

工学博士 野口 博司 Hiroshi Noguchi

転位の逆応力)によって、その運動を阻止され、そ して阻止された転位の逆応力によって転位の発生 も止まる。そこで、(d)のようにもう一方のすべり 系 b が作動し始めるが、こちらもまた同様な経過 をたどり、最大応力ではもはや新たな転位は発生し なくなる。除荷過程では、(e)のようにまず b の近 くのすべり面で転位が発生し、すべりを起こす。そ の後、き裂面は接触し、転位の発生は止まり、き裂 の上側のすべり面に転位が発生し、作動するように なる。以後、順次番号順に転位が作動し、き裂は1 サイクル中に、繰返し塑性変形によって生じた自由 表面だけ進展する。

図1 疲労き裂の一サイクル中の開閉口と伝ば

つまり、疲労き裂伝ばは、塑性変形の繰返しによ って起こる。疲労限度は、繰返し塑性変形が消失す る状態に対応する。

図2 疲労き裂伝ばのミクロ力学モデル

3. Dugdale モデルを用いた疲労き裂伝ぱシミュ レーション結果

第二章のメカニズムにもとづいて、疲労き裂伝ぱ シミュレーションを行った結果を示す。疲労き裂伝 ぱの本質は塑性変形の繰返しであり、Dugdale モデ ルでは、その塑性変形を棒要素で弾性体に付加する ことによって、表現する。図3、4 に、Dugdale モ デルを用いた疲労き裂伝ぱシミュレーションの概 略を示す⁵⁾。計算は、最大応力 $\sigma_{\infty,mx}$ 、最小応力 $\sigma_{\infty,mn}$ 、疲労き裂開口応力 $\sigma_{\infty,op}$ で順次計算し、き裂 伝ぱ量 Δc を、そしてき裂先端後方に残留させる塑 性変形を決定している。

図3 Dugdale モデルによる塑性変形の表現

有効応力拡大係数幅 ΔK_{eff} は、以下で計算している $^{5)}$ 。 ここで、N:繰返し数、 c_0 :初期き裂長さ、

c:今のき裂長さ、Cとmは材料定数である。

$$\Delta K_{\text{eff}} = (\sigma_{\infty, \max} - \sigma_{\infty, \text{op}}) \cdot \sqrt{\pi} \cdot c \tag{1}$$

そして、伝ば速度は、下記の修正パリス則³⁾を用 いている。

$$\frac{dc}{dN} = C \cdot \left(\Delta K_{\text{eff}}\right)^m \tag{2}$$

図4 Dugdale モデルによる一サイクル中の塑性 変形解析

図5 疲労き裂伝ば解析結果例

図 5 に示すように,疲労き裂は初期き裂から伝ぱ した後、 ΔK_{eff} は局所的に最小値をとる。この最小 値が $\Delta K_{eff,th}$ より小さくなると、伝ぱしていた疲労 き裂は停留してしまう。 $\Delta K_{eff,th}$ は、き裂先端に繰 返し新たに塑性変形が生じない状態に対応してお り、き裂先端から刃状転位が射出する応力拡大係数

$$K_{\rm e}$$
 に対応する。
 $\Delta K_{\rm eff, th} = 2K_e$ (3)

$$K_e = \frac{E}{1 - \nu^2} \sqrt{\frac{b}{\pi b_0}} \tag{4}$$

ここで、E: ヤング率、v: ポアソン比、b: バー $ガースベクトル、<math>b_0:$ 転位しんの大きであり、Eが大きな因子となる。局所最小 ΔK_{eff} がちょうど $\Delta K_{eff,th}$ になるときの外力 σ_{∞} がき裂材の疲労限度 $\sigma_{\infty,w}$ に対応する。そして、 ΔK_{th} は次式で定義して いる。

$$\Delta K_{\rm th} = \sigma_{\infty,w} \sqrt{\pi \cdot c_0} \tag{5}$$

図 6 に解析結果を示す。微小き裂においては、疲労限度は降伏応力 σ_Y 、降伏ひずみ ε_Y の上昇ととともに、上昇する。しかし、長いき裂ではこれらに依存せず、 ΔK_{th} と $\Delta K_{eff,th}$ の比は、あらゆる材料で一定値となる。

4. 疲労実験結果

図 7 に、実材料において ΔK_{th} とき裂長さの関係を 示す⁶⁾。これは、図 6 と同様な傾向がある。図 8 に は、種々の材料において、C T 試験片で求められた ΔK_{th} の値をまとめている⁶⁾。ブリネル硬さH_Bが ほぼ 400 までは、 ΔK_{th} はH_Bに依存しない結果とな っており、図 6 の傾向と一致している。

図7ΔKthのき裂長さ依存性

図8 CT 試験片で求めた ΔKth の材質依存性

5. おわりに

疲労安全は、応力を用いた下記の式を使用して、保 障している。

$$\sigma_a \le \sigma_w / S \tag{6}$$

ここで、 σ_a :応力振幅、 σ_w :疲労限度、S:安全係数で ある。 σ_a はコンピュータを用いた解析やひずみゲージ ゲージを用いた実測から得、 σ_w は材料カタログやデ ータベースまたは材料試験から得ることができる。疲労 の本質はMPa \sqrt{m} の次元をもつ ΔK_{th} によって表現さ れるべきものであるから、使用条件に変わる σ_w を補正 するためのSが必然となる。従来の材料選択は、平滑 材から求めらた疲労限度を用いて行われたきたが、 ΔK_{th} における材質依存性を考慮すれば、より合理的材 料選択と設計ができる、と思われる。近い将来、そのよ うに発展することが望まれる。

参考文献

- 西田新一、機械・機器の破損原因と対策、日刊 工業新聞
- 西谷弘信、総合材料強度学講座6「疲労強度学」、 オーム社
- 3) 日本材料学会編、疲労設計便覧、養賢堂
- 4) Yasuji ODA, Yoshiyuki FURUYA, Hiroshi NOGUCHI and Kenji HIGASHIDA AFM and SEM Observation on Mechanism of Fatigue Crack Growth in an Fe-Si Single Crystal, International Journal of Fracture Vol.113, (February 2002), pp.213-231.
- 5) Na-oki FUKUMURA, Tomohiro SUZUKI, Shigeru HAMADA, Kaneaki TSUZAKI and Hiroshi NOGUCHI, Mechanical Examination about Crack Length Dependency and Material Dependency of Threshold Stress Intensity Factor Range with Dugdale Model, Engineering Fracture Mechanics, Vol. 135 (February 2015), pp. 168-186.
- 6) Tatsujiro MIYAZAKI, Hiroshi NOGUCHI and Keikaku OGI, Quantitative Evaluation of the Fatigue Limit of a Metal with an Arbitrary Crack under a Stress Controlled Condition (Stress Ratio = -1), International Journal of Fracture, Vol.129, No.1 (2004), pp.21-38.